Wrocław University of Technology

Obliczenia metodą dokładnej diagonalizacji hamiltonianu w kontekście cieczy elektronowych i kwantowego efektu Halla

Arkadiusz Wójs

Instytut Fizyki
Politechnika Wrocławska

Outline

1.Quantum liquids
 2.Composite fermions

3.Computations
4.Perspectives/applications
5.Published results

1. Quantum liquids

FILLING FACTOR ν

Fractional quantum Hall effect

Two-Dimensional Magnetotransport in the Extreme Quantum Limit

D. C. Tsui, ${ }^{(a),}{ }^{\text {(b) }}$ H. L. Stormer, ${ }^{(a)}$ and A. C. Gossard

Bell Laboratories, Murray Hill, New Jersey 07974 (Received 5 March 1982)

A quantized Hall plateau of $\rho_{x y}=3 h / e^{2}$, accompanied by a minimum in $\rho_{x x}$, was observed at $T<5 \mathrm{~K}$ in magnetotransport of high-mobility, two-dimensional electrons, when the low-est-energy, spin-polarized Landau level is $\frac{1}{3}$ filled. The formation of a Wigner solid or charge-density-wave state with triangular symmetry is suggested as a possible explanation.
PACS numbers: 72.20.My, 71.45.-d, 73.40.Lq, 73.60.Fw

2D electron gas high magnetic field low temperature
\rightarrow Quantized Hall effect and vanishing longitudinal resistance
\rightarrow electron quantum liquid

Klitzing constant $: R_{K}=h / e^{2}$

Many-electron states in lowest Landau level

Single-electron Hamiltonian

$$
H=\frac{1}{2 m}\left(p-\frac{e}{c} A\right)^{2}
$$

Symmetric gauge

$$
A=-\frac{B}{2}(\mathbf{y}, x, 0)
$$

Single-electron states (monomial \times tail)

$$
\varphi_{m} \propto z^{m} e^{-|z|^{2} / 4 \lambda^{2}}
$$

($\mathrm{m}=$ angular momentum)

Many-electron states (polynomial \times tail)

$$
\Psi=P \mathbb{C}_{1}, z_{2}, z_{3}, \ldots \searrow \exp \left[-\sum_{i}\left|\frac{z_{i}}{2 \lambda}\right|^{2}\right]
$$

P is antisymmetric (fermions), and:

$$
\operatorname{deg} \boldsymbol{P}_{-}^{-}=N_{\phi}=N / v
$$

Where N_{ϕ} is the highest allowed m = the number of single-electron states
= Landau level degeneracy
$=$ magnetic flux $\Phi=B A$ (in units $\phi_{0}=h c / e$),
and $v=N / N_{\phi}$ is the "filling factor"
(In higher Landau levels, Ψ has poles)

Laughlin $v=1 / 3$ incompressible liquid

$$
\mathrm{c}_{\mathrm{OH}}^{+} \sim \Pi_{i} z_{i} ; \quad c_{\mathrm{QE}}^{+} \sim \Pi_{i} \delta / \partial_{z_{i}}
$$

Laughlin $v=1 / 3$ wave function: $\Psi_{1 / 3}=\prod_{i<j} \swarrow_{i}-z_{j}{ }_{-}^{3} e^{\cdots}$
Adiabatic injection of flux quantum through thin solenoid \rightarrow new eigenstate, with $\pm \mathrm{e} / 3$ charge accumulation/depletion

Quasiparticles with fractional charge (confirmed)
\rightarrow concept of anyon quantum statistics

Problem: explain incompressibility

FQHE \rightarrow

incompressible ground state gapped quasiparticles, localization

Multiple fractions (universal: material, size, shape, disorder, temperature, fields, ...)

Wave functions: anti-symmetric polynomials of fixed degree N / v

Need to explain this

2. Composite fermions

Jain's composite fermions

Filling factor $=v$
N interacting electrons in lowest Landau level of degeneracy $N_{\phi}=N / v$ $\Psi=$ anti-symmetric polynomial of degree N_{ϕ}
$\Psi_{\mathrm{z2} \ldots \mathrm{zN}}\left(\mathrm{z}_{1}\right)$ has N_{ϕ} zeros (vortices):
N -1 fixed at $\mathrm{z}_{2} \ldots \mathrm{z}_{\mathrm{N}}$ (Pauli exclusion principle); others mobile
Composite fermions: bound states of electrons and $2 p$ vortices Number of vortices $=$ LL degeneracy $=$ magnetic flux (in units of hc/e)

Electrons with strong (Coulomb) interaction in strong magnetic field B

Composite fermions with weak residual interaction in weak magnetic field B^{*}

$$
\Phi^{*}=\Phi-N \cdot 2 p \cdot h c / e ; \quad B^{*}=B-(2 p \cdot h c / e) ; \quad\left(*^{*}\right)^{1}=v^{-1}-2 p
$$

3. Computations

Evidence from numerics

N electrons on sphere radial magnetic field from a monopole 2Q 2Q=magnetic flux through surface
LL degeneracy=2Q+1
$v \sim N / 2 Q$
$\mathrm{L}=$ total angular momentum
$\mathrm{E}=$ total Coulomb energy
Labels = correlation energy per particle

neutral excitation: $L=k R$

Evidence from numerics

Effective magnetic flux: $2 Q^{*}=2 Q-2(N-1)=3$
CF LLs $=\ell$-shells: $\ell=\mathbf{Q}^{*}, Q^{*}+1, \ldots$
Degeneracy $=\mathbf{2 \ell}+\mathbf{1}$

Evidence from numerics

Effective magnetic flux: $2 Q^{*}=2 Q-2(N-1)=3$
CF LLs $=\ell$-shells: $l=\mathbf{Q}^{*}, Q^{*}+1, \ldots$
Degeneracy $=\mathbf{2 \ell} \mathbf{+ 1}$

$\mathrm{L}=0$ (full shells)

Evidence from numerics

Effective magnetic flux: $2 Q^{*}=2 Q-2(N-1)=3$
CF LLs $=\ell$-shells: $l=\mathbf{Q}^{*}, Q^{*}+1, \ldots$
Degeneracy $=2 \ell+1$

$\mathrm{L}=7 / 2 \oplus 9 / 2 \leq 8$ (CF exciton)

Evidence from numerics

Effective magnetic flux: $2 Q^{*}=2 Q-2(N-1)=3$
CF LLs $=\ell$-shells: $l=\mathbf{Q}^{*}, Q^{*}+1, \ldots$
Degeneracy $=2 \ell+\mathbf{1}$

$\mathrm{L}=7 / 2^{2} \oplus 9 / 2^{2} \leq 14$ (CF bi-exciton)
(or one exciton with 2 quanta)

Evidence from numerics

Effective magnetic flux: $2 Q^{*}=2 Q-2(N-1)=3$
CF LLs $=\ell$-shells: $\ell=\mathbf{Q}^{*}, Q^{*}+1, \ldots$
Degeneracy $=2 \ell+1$

$\mathrm{L}=7 / 2^{3} \oplus 9 / 2^{3} \leq 18$ (CF tri-exciton)
(or one or two excitons with 3 quanta)

Configuration interaction

Many-electron Hamiltonian
$H=\sum_{i} \frac{1}{2 \mu}\left(\mathbf{p}_{i}-\frac{e}{c} \mathbf{A}_{i}\right)^{2}+\sum_{i<j} V \mathbf{r}_{i}-\mathbf{r}_{j}$
High magnetic field \rightarrow
large cyclotron gap
fractional LL occupation
Model extended 2DEG by $N<\infty$
\rightarrow Haldane spherical geometry
2D symmetry (rotations) radial field B
(Dirac monopole $\Phi=2 Q$)
LL = shell of $\ell=\mathrm{Q}$
LL degeneracy $=2 \mathrm{Q}+1$

Single particle states: monopole harmonics $|\ell, m\rangle$
Interaction:
e^{2} / r, chord distance (or model repulsions)
CI basis:
N -electron determinants

$$
c_{1}^{+} \cdots c_{N}^{+}|\mathrm{vac}\rangle
$$

Hamiltonian (2-body \rightarrow sparse)

$$
\begin{aligned}
& H_{2-\text { bold }}=\sum_{i k l} V_{i j k l} c_{i}^{+} c_{j}^{+} c_{k} c_{l} \\
& V_{i j ; k}=\sum_{m} C_{i j}^{m} C_{k l}^{m} V l_{-}^{-}
\end{aligned}
$$

Lanczos diagonalization $\rightarrow E(L)$

4. Perspectives/applications

Particles with „memory"

Moore-Read „Pfaffian" wave function in half-filled Landau level

$$
\Psi_{P f}=\prod_{i<j}\left(\epsilon_{i}-z_{j}{ }^{2}\right) \operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) e e^{\cdots}
$$

$\operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right)=\mathcal{A}\left(\frac{1}{z_{1}-z_{2}} \frac{1}{z_{3}-z_{4}} \cdots\right) \quad \begin{aligned} & \text { For a skew-symmetric matrix } \boldsymbol{A} \text { of } \operatorname{dim}=2 n \\ & \text { det }=\left(\mathrm{n}^{\text {th }} \text {-degree polynomial in matrix elements }\right)^{2} \equiv(\mathrm{Pf})^{2}\end{aligned}$
$p_{x}+i p_{y}$ superfluid of paired CFs ($B^{*}=0$, unstable CF Fermi sea)
e/4-charged quasiholes (and quasiparticles)
2^{n-1} degeneracy for $2 n$ localized quasiholes \rightarrow nonabelian statistics Quasiholes cannot be created or destroyed individually/locally

Different states of pinned multiple quasiholes (with different history) as qubits (bits of quantum information) \rightarrow quantum computation

New nonabelian state: $v=3 / 8$

Composite fermion $=$ electron + correlation hole

CFs interact (however weakly) with one another
\rightarrow can form quantum liquids (like electrons but not exactly)

Nonabelian „Pfaffian" state of CFs would occur at $v=3 / 8$

Is it really the ground state at this filling?
Experimental evidence for some liquid at $v=3 / 8$ (2003)

5. Published results

Possible Anti-Pfaffian Pairing of Composite Fermions at $\boldsymbol{\nu}=\mathbf{3} / \mathbf{8}$

Sutirtha Mukherjee, ${ }^{1}$ Sudhansu S. Mandal, ${ }^{1}$ Arkadiusz Wójs, ${ }^{2}$ and Jainendra K. Jain ${ }^{3}$
${ }^{1}$ Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
${ }^{2}$ Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland
${ }^{3}$ Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA (Received 8 July 2012; published 18 December 2012)

We predict that an incompressible fractional quantum Hall state is likely to form at $\nu=3 / 8$ as a result of a chiral p-wave pairing of fully spin polarized composite fermions carrying four quantized vortices, and that the pairing is of the anti-Pfaffian kind. Experimental ramifications include quasiparticles with nonAbelian braid statistics and upstream neutral edge modes.

DOI: 10.1103/PhysRevLett.109.256801

We thank Michael Levin for a valuable discussion, Parsa Bonderson for a useful comment, and acknowledge financial support from the NSF under Grant No. DMR-1005536, the DOE under Grant No. DE-SC0005042 (J. K. J.), the Polish NCN Grant No. 2011/01/B/ST3/04504, EU Marie Curie Grant No. PCIG09-GA-2011-294186 (A.W.), and CSIR, Government of India (S.M.). The computations were performed using the cluster of the Department of Theoretical Physics, IACS, and the Wroclaw Centre for Networking and Supercomputing.

PACS numbers: 73.43.-f, 05.30.Pr, 71.10.Pm

Optically induced charge conversion of coexistent free and bound excitonic complexes in two-beam magnetophotoluminescence of two-dimensional quantum structures

J. Jadczak, ${ }^{*}$ L. Bryja, and A. Wójs
Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland
M. Potemski
Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble, France

(Received 14 March 2012; published 7 May 2012)
We report on extensive polarization-resolved photoluminescence (PL) studies of a variety of excitonic complexes formed in high-quality symmetric GaAs quantum wells containing a high-mobility two-dimensional (2D) hole gas in a broad range of magnetic fields from 0 to 23 T and under two-beam illumination, allowing for dynamical control of the hole concentration beyond the point of conversion from p - to n-type structures. We have demonstrated charge conversion between positive and negative complexes bound to acceptors in the well, differing from the charge conversion of free trions due to charge reflection symmetry breaking by a fixed impurity, leaving a qualitative trace (exchange splitting) in the PL spectrum. The effect of switching between the electron and hole gases (in the same well) on different emission lines has also allowed us to distinguish the (direct and cyclotron-satellite) emission lines from positive trions moving almost freely in the quantum well and bound to nearby ionized acceptors in the barrier, thus demonstrating their coexistence in high-quality structures.

DOI: 10.1103/PhysRevB.85.195108
PACS number(s): 71.35.Ji, 71.35.Pq, 73.21.Fg, 78.20.Ls
The structures used in the experiment were kindly supplied by D. Reuter and A. Wieck (Ruhr Universität Bochum). This work was supported by Polish MNiSW Grant No. N202179538 (L.B.), Polish NCN Grant No. 2011/01/B/ST3/04504 (J.J.), and EU Marie Curie Grant No. PCIG09-GA-2011-294186 (A.W.) and by EuroMag-NET II under EU Contract No. 228043 (M.P.). Calculations have been carried out at the Wroclaw Centre for Networking and Supercomputing (part of PL-Grid Infrastructure).

