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1. Quantum liquids 



Fractional  

quantum Hall effect 

2D electron gas 

high magnetic field 

low temperature 

  Quantized Hall  

effect and vanishing 

longitudinal resistance 

  electron quantum liquid 
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Many-electron states  

in lowest Landau level 
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Single-electron states 

(monomial  tail) 

Many-electron states (polynomial  tail) 

(m=angular momentum) 
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P is antisymmetric (fermions), and: 

Where N  is the highest allowed m  

      = the number of single-electron states 

      = Landau level degeneracy 

      = magnetic flux =BA (in units 0=hc/e), 

and =N/N  is the „filling factor” 

(In higher Landau levels,  has poles) 



Laughlin =1/3 incompressible liquid 
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( =1): 

(Vandermonde) 

Laughlin =1/3 wave function: 
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Adiabatic injection of flux quantum through thin solenoid  

 new eigenstate, with e/3 charge accumulation/depletion 

Quasiparticles with fractional charge (confirmed) 

 concept of anyon quantum statistics 

2DEG at =1/m



Problem: explain incompressibility 

FQHE   

incompressible ground state 

gapped quasiparticles, localization 

Multiple fractions  

(universal: material, size, shape,  

disorder, temperature, fields, …) 

Wave functions: anti-symmetric  

polynomials of fixed degree N/  

Need to explain this 



2. Composite fermions 



Jain’s composite fermions 

Filling factor =  

N interacting electrons in lowest Landau level of degeneracy N =N/  

 = anti-symmetric polynomial of degree N  

z2…zN(z1) has N  zeros (vortices):  

 N-1 fixed at z2…zN (Pauli exclusion principle); others mobile 

Composite fermions: bound states of electrons and 2p vortices 
Number of vortices = LL degeneracy = magnetic flux (in units of hc/e) 

Electrons with strong (Coulomb) 

interaction in strong magnetic field B 

Composite fermions with weak residual 

interaction in weak magnetic field B* 

pehcpBBehcpN 2*;2*;2* 11

(K
w

o
n
 P

a
rk

) 



3. Computations 



Evidence from numerics 

N electrons on sphere 

radial magnetic field 

from a monopole 2Q 

2Q=magnetic flux 

through surface 

LL degeneracy=2Q+1 

 ~ N/2Q 

L k 

neutral excitation: L = kR 

L = total angular 

momentum 

E = total Coulomb 

energy 

Labels = correlation 

energy per particle 

QE+QH 
Coulomb eigenenergies 

Average CF energies 



Evidence from numerics 

Effective magnetic flux: 

2Q* = 2Q – 2(N-1) = 3 

CF LLs = ℓ-shells: ℓ = Q*, Q*+1, … 

Degeneracy = 2ℓ + 1 



Evidence from numerics 

Effective magnetic flux: 

2Q* = 2Q – 2(N-1) = 3 

CF LLs = ℓ-shells: ℓ = Q*, Q*+1, … 

Degeneracy = 2ℓ + 1 

L=0 (full shells) 
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ℓ =3/2 



Evidence from numerics 

Effective magnetic flux: 

2Q* = 2Q – 2(N-1) = 3 

CF LLs = ℓ-shells: ℓ = Q*, Q*+1, … 

Degeneracy = 2ℓ + 1 

L = 7/2 ⊕ 9/2 ≤ 8 (CF exciton) 

ℓ =3/2 

5/2 

7/2 

9/2 

(L=kR) 



Evidence from numerics 

Effective magnetic flux: 

2Q* = 2Q – 2(N-1) = 3 

CF LLs = ℓ-shells: ℓ = Q*, Q*+1, … 

Degeneracy = 2ℓ + 1 

L = 7/22 ⊕ 9/22 ≤ 14 (CF bi-exciton) 

ℓ =3/2 

5/2 

7/2 

9/2 

(or one exciton with 2 quanta) 



Evidence from numerics 

Effective magnetic flux: 

2Q* = 2Q – 2(N-1) = 3 

CF LLs = ℓ-shells: ℓ = Q*, Q*+1, … 

Degeneracy = 2ℓ + 1 

L = 7/23 ⊕ 9/23 ≤ 18 (CF tri-exciton) 

ℓ =3/2 

5/2 

7/2 

9/2 

(or one or two excitons with 3 quanta) 



Configuration interaction 

Model extended 2DEG by N<  

 Haldane spherical geometry 

      2D symmetry (rotations) 

      radial field B 

           (Dirac monopole =2Q) 

      LL = shell of ℓ = Q 

      LL degeneracy = 2Q+1 
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High magnetic field   

      large cyclotron gap 

      fractional LL occupation 

Single particle states: 

      monopole harmonics 

Interaction: 

      e2/r, chord distance 

      (or model repulsions) 

CI basis: 

      N-electron determinants 

 

Hamiltonian (2-body  sparse) 

 

 

 

Lanczos diagonalization  E(L) 
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4. Perspectives/applications 



Particles with „memory” 

Moore-Read „Pfaffian” wave function  

in half-filled Landau level ...2 1
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For a skew-symmetric matrix A of dim=2n 

det = (nth-degree polynomial in matrix elements)2  (Pf)2 

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px+ipy superfluid of paired CFs (B*=0, unstable CF Fermi sea) 

e/4-charged quasiholes (and quasiparticles) 

2n-1 degeneracy for 2n localized quasiholes  nonabelian statistics 

Quasiholes cannot be created or destroyed individually/locally 

Different states of pinned multiple quasiholes (with different history) 

as qubits (bits of quantum information)  quantum computation  



New nonabelian state: =3/8 

Composite fermion = electron + correlation hole 

 

CFs interact (however weakly) with one another 

 can form quantum liquids (like electrons but not exactly) 

 

Nonabelian „Pfaffian” state of CFs would occur at =3/8 

 

Is it really the ground state at this filling? 

Experimental evidence for some liquid at =3/8 (2003) 



5. Published results 






